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Abstract. We derive closed analytical expressions for the complex Berry phase of an open
quantum system in a state which is a superposition of resonant states and evolves irreversibly
due to the spontaneous decay of the metastable states. The codimension of an accidental
degeneracy of resonances and the geometry of the energy hypersurfaces close to a crossing of
resonances differ significantly from those of bound states. We discuss some of the consequences
of these differences for the geometric phase factors. For example, instead of a diabolical point
singularity there is a continuous closed line of singularities formally equivalent to a continuous
distribution of ‘magnetic’ charge on a diabolical circle, there are different classes of topologically
inequivalent non-trivial closed paths in parameter space, the topological invariant associated with
the sum of the geometric phases, dilations of the wavefunction due to the imaginary part of the
Berry phase and others.

1. Introduction

During the last ten years the geometric phase factors arising in the adiabatic evolution
of quantum systems [1] have been the subject of many investigations [2]. Most of the
early literature was concerned with the geometric phase factors of closed systems driven by
Hermitian Hamiltonians [3]. More recently there has been substantial interest in the complex
geometric phase acquired by the eigenstates of open quantum systems. This problem arises
naturally in connection with various experiments which, by their very essence, require
the observation of the Berry phase in metastable states (also called resonant or Gamow
states). Dattoleet al [4] studied the Berry phase in the optical supermode propagation in

a free electron laser, which is a classical system described by éddeher-like equation

with a non-Hermitian Hamiltonian. The measurement of the geometric phase in atomic
systems with two energy levels, one of which at least is metastable, was also described in
terms of a non-Hermitian Hamiltonian by Miniatued al [5]. The validity of the adiabatic
approximation for dissipative, two level systems driven by non-Hermitian Hamiltonians
was examined by Nenciu and Rasche [6], and by Kvitsinsky and Putterman [7] who
also established that, in this case, the Berry phase is complex. A higher-order adiabatic
approximation for two-level non-Hermitian Hamiltonians was proposed by Sun [8], who
also showed that the holonomy structure associated to the Berry phase factor of the non-
Hermitian case is the non-unitary generalization of the holonomy structure of the Hermitian
case. In a previous paper, we gave closed analytical expressions for the geometric phase
of true resonant states [9] defined as energy eigenstates of a Hermitian Hamiltonian which
satisfy purely outgoing wave boundary conditions at infinity [10], and pointed out some
of the mathematically interesting and physically relevant properties resulting from the non-
self-adjointness of the problem. In this connection, later, we showed that the codimension
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2568 A Mondragn and E Herahdez

of the accidental degeneracy afresonances and the topological structure of the energy
surfaces close to a crossing of resonances differ significantly from those of bound states
[11]. By means of a numerical analysis of the experimental data on thdo2blet of
resonances witll’ = 0,1 in the energy spectrum of the nucletBe at about 16 and

17 MeV, we showed in a realistic example that a true crossing of resonances mixed by a
Hermitian interaction may be brought about by the variation of only two real independent
parameters [12]. Laubeat al [13] measured the geometric phase associated with a triple
degeneracy of resonances in a flat, non-symmetric, triangular microwave resonator.

In this paper we explore further the properties of the Berry phase of resonant states of a
Hermitian Hamiltonian with non-self-adjoint boundary conditions. The paper is organized
as follows. In section 2, we consider the time evolution of a quantum system in a state which
is a superposition of bound and unbound states evolving in the presence of an external field
of force which changes slowly with time. By means of an expansion of the wavefunction in
terms of bound and resonant states of the unperturbed system, we associate a complex non-
Hermitian matrix with the time evolution of the bound and resonant states evolving under
the action of the time-dependent perturbation. Accidental degeneracy of two resonances
and the properties of the energy hypersurfaces at the crossing of resonances are discussed
in section 3. In section 4 we derive general expressions for the Berry phase of resonant
states and discuss some of its properties. In section 5 we briefly discuss the validity of the
adiabatic approximation. The paper ends in section 6 with a short summary of results and
some conclusions.

2. Adiabatic mixing of resonant states

Let us consider the adiabatic time evolution of a quantum system in a state which is
a superposition of unstable states moving in some strong external field of force which
changes slowly with time. In order to have some concrete example in mind, although a
very hypothetical one, we may think of &Be nucleus which has only unstable energy
eigenstates moving in the field of a heavy doubly magic nucleus?¥fib, in a peripheral
collision in which the distance between the two nuclei is never much smaller than the sum of
the nuclear radii. In a semiclassical treatment of the collision, when the centres of the nuclei
move along given classical trajectories, the parameters in the nucleus—nucleus interaction
change with time [14]. Another example could be a highly excited Hydrogen atom in strong
external, crossed electric and magnetic fields. This system has no bound states, it has only
resonances [15]; when the external fields change slowly with time, the parameters in the
atom-field interaction change with time.

The evolution of the unstable quantum system under the influence of the external
perturbation is governed by the time-dependent &dinger equation

iﬁg = HWV. Q)
ot

The HamiltonianH is the sum of the time-independent Hamiltoniéfy describing the
evolution of the unperturbed unstable system plus a perturbation Agrparametrized in
terms of some set of external parametgfs, Co, ..., Cy}.

The energy eigenfunctions of the unperturbed Hamiltomian are the solutions of the
equation

H()wm (51) = gm‘pm (‘i:l) (2)
plus the appropriate boundary conditions.
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Assuming that in the absence of perturbation the unstable nucleus decays spontaneously
into two stable nuclear clusters, the unperturbed energy eigenfunctions may be written as
cluster model wavefunctions [16],

om(EE) = A {m(&»qu(s,-)”AB(r“)yy (fm} 3

r'AB
where¢, and ¢y are the wavefunctions of the clusters A andiB3g ., (ra5) is the radial
part of the wavefunction of the relative motion of the two clust@i¥(745) is a spherical
harmonic, andA is the antisymmetrizer. In our examplg, would be the eigenfuction of
a state ofBe which decays spontaneously in tfide clusters. In this cas@up ., (rap) is
a Gamow function which vanishes at the origin and behaves as a purely outgoing wave for
large values of the relative distanegg,

L (S o

UaBm(rap) dr

k,, is the complex wave number. This boundary condition is not self-adjoint, in consequence
the Gamow states are not orthogonal in the usual sense, and the energy eigenvalues are
complex, with Re,, > 0 and Im&,, < 0. Nevertheless, bound and resonant states form a
bi-orthonormal set with their adjoints, which may be extended by a continuum of suitably
chosen scattering states of complex wave nunibtr form a complete set in which any
square integrable function may be expanded. The rules of normalization, orthogonality, and
completeness satisfied by the eigenstates of thed8uiger equation with local and non-
local potentials belonging to complex eigenvalues withAm< 0, (Gamow or resonant
states) are given in Mondréag et al [10]. A clear exposition of the properties of resonant
states may be found in the textbook byiBn [17].

Since we are interested in the time evolution of the system in a state which is a
superposition of unstable states, we make an expansion of the wavefudctiorterms
of bound and resonant states &,

W =3 an0gn(@) + [ bk gk 6 . (5)

m c

In general, the index: runs over bound and resonant states. The scattering states
o™ (k, &) of complex wave numbek are defined by analytic continuation [10]. The
integration contoulC in the complex wave number plane is a straight line with slefie
that goes through the origin. In this way we separate out of the continuum the resonance
contribution to W, which should be dominant for energies close to the real part of the
complex energy eigenvalues.

Substitution of (5) in (1) gives the set of coupled equations

d“gt(” =~ Enan(0) - }'l:;wmmﬂman(r) - /C @ul Hilp D ()b Ak (6)
and a similar expression fob¢k, ¢)/dr.

When the interactions are time reversal invariant, the dual of the complex Gamow
functionu g . (rap) is the same function [10]. Since the bound-state cluster wavefunctions
¢4 andgp are real, the dual of the resonant-state wavefunetipfg;) is the same complex
function ¢, (&;). When the interactions are not time reversal invariant, the Gamow function
and its dual are not the same function. We will use the notatigri&;))for the Gamow
function and{g,, (&;)| for its dual. Hence, the matrix element of the perturbation téfm
taken between bound or resonant states of the unperturbed system is given by

@m | Hil ) = f f (om (&) Halgn (&) s - - - ;. @
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The matrixH with matrix elements

Hm,n = 51718m,n + <‘pm |Hl| (pn) (8)

is, in general, non-symmetric, complex, and non-Hermitian. When the forces acting on the
system are time reversal invariaht,is symmetric, but non-Hermitian. The dependence of
H, on the external parameters is inheritedHbywhich is also parametrized in terms of the
same sefCy, Co, ..., C,} of external parameters.

In the following we will be concerned with the adiabatic evolution of a system with two
resonant states very close in energy which are strongly mixed by the Hermitian interaction
H;. In our hypothetical example, these could be the twosfates ofBe with T =0, 1 at
E1 =16.622 MeV andE, = 17.01 MeV. The contribution of the non-resonant background
integral over the continuum of scattering functions will play no part in the following
discussion. Therefore, to ease the notation, we will disregard the contribution of the
background scattering functions. In this approximation,

HY =" [Z Hm,nan(r)] |9 (£))- ©

Then, the set of equations (6) reduces to
dm (t) = _;:l Xn: Hm,nan ([) (10)

wherea,, (1) is the time derivative ofy, (¢).

The complex energy eigenvalues associated with the resonant states in the presence of
the perturbation will arise as the eigenvalues of the non-Hermitian métrassociated,
through equation (10), with the decaying process.

3. Accidental degeneracy of resonances

Non-trivial geometric phase factors of the energy eigenvectors or eigenfunctions are related
to the occurrence of accidental degeneracies of the corresponding eigenvalues [1,18].
In the previous section we associated a complex n, non-Hermitian matrixH with

an open quantum system with resonances and resonant states. In the absence of
symmetry, degeneracies are called accidental for lack of an obvious reason to explain
why two energy eigenvalueds; and E,, of H should coincide. However, if the matrix

H is embedded in a population of complex non-Hermitian matri¢é&”;, Co, ..., Cy)}
smoothly parametrized by external parametersCy, Co, ..., Cy), degeneracy in the
absence of symmetry is a geometric property of the hypersurfaces representing the real
or complex eigenvalues dfi in a (N + 2)-dimensional Euclidean space with Cartesian
coordinategCy, Co, ..., Cy, ReE, Im E). In contrast with the case of Hermitian matrices,
complex non-Hermitian matrices with repeated eigenvalues cannot always be brought to
diagonal form by a similarity transformation. This feature leads to a richer variety of
possibilities. Thus, it will be convenient to examine first the accidental degeneracy of two
resonances and the topology of the energy surfaces close to a crossing of resonances in
parameter space.

3.1. Degeneracy of two resonances

Since we are interested in the possibility of an accidental degeneracy in a system with two
resonant states strongly mixed by a Hermitian interaction, all other bound or resonant
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eigenstates being non-degenerate, we may suppose that we already know the correct
eigenvectors ofH for all the real and complex eigenenergi&s, except for the two
corresponding to the crossing of which we want to investigate. Using for this two states
two vectors which are not eigenvectors but which are orthogonal to each other and to all
other eigenvectors, we obtain a complete basis to représenin this basisH will be
diagonal except for the element, and H,;. The diagonal elementd;; and Ha, will, in
general, be non-vanishing and different from each other. There is no loss of generality in
this supposition, since any complex matrixmay be brought to a Jordan canonical form by
means of a similarity transformation [19]. When the eigenvalues are edual,is either
diagonal or equivalent to a Jordan block of rank two. Hence, in the following, we need
consider only the conditions for degeneracy of the submaisix.

It will be convenient to measure the resonance enerdigand E,, from the centroid,
£, of the diagonal terms ik, 5, then,

Hoo =E1+H (11)
the traceless X 2 matrix H may be written in terms of the Pauli-matrix valued vector
o = (01, 02,03) as

H=@R-i}I) o (12)
where R andT" are real vectors with Cartesian componefXs, X,, X3) and (I'y, I'p, I'3)
given by

X; —i3T; = 3[Tr(Hoy)] (13)
when the forces acting on the system are time reversal invakarandI", vanish.

In the absence of more specific information about the external parantgtense will
parametrize{ in terms of R andT", according to (11) and (12). It will be assumed that
X; = X;(Cy1, Co, ..., Cy) are bijective and define a homeomorphism of the manifold of the

external parameters onto the manifold of the complex, non-Hermitiar2 2natricesHz,».
From (12), the eigenvalues @{ are given by

€ = :F,/(R— |%F)2 (14)
and the corresponding eigenvaluestbfire
Ei ;=& Fe. (15)

Then, E; and E> coincide whene vanishes. Hence, the condition for accidental
degeneracy of the two interfering resonances may be written as

J(Ra—iiTH2=0. (16)

Since real and imaginary parts should vanish, we get the pair of equations
R7—1II7=0 17)
and
R,-T,=0. (18)

These equations admit two kinds of solutions correspondingpig being or not being
diagonal at the degeneracy.

(i) When bothR,; andT'; vanish, equations (17) and (18) define a point in parameter
spaceH is diagonal at the degeneracy and the submatsix has two cycles of eigenvectors
of length one. The two complex eigenvaluestbfwhich become degenerate migrate to
the real axis where they fuse into one real positive energy eigenvalue embedded in the
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continuum [20]. Since in this case all the Cartesian componentB 0findI'; should
vanish, the minimum number of external parameters that should be varied to produce a
degeneracy of two resonances to form a bound state embedded in the continuum is four or
six depending on the quantum system being or not being time reversal invariant.

(ii) In the second case, when the degeneracy conditions (17) and (18) are satisfied for
non-vanishingR,; andT';, these equations define a circle in parameter space. In this case
‘H, does not vanish at the degeneracy and the corresportdjn non-diagonal at the
degeneracy, its first Jordan blotk,, is of rank two and has one cycle of generalized
eigenvectors of length two, all other Jordan blocks have one cycle of length one. In this
case the two complex eigenvaluestfwhich become degenerate fuse into one repeated
complex eigenvalu€. Since, the two linearly independent conditions (17) and (18) should
be satisfied for non-vanishing values Bf, andT';, at least two real, linearly independent
parameters should be varied to produce a rank two degeneracy of resonances. Hence, the
codimension of a second rank degeneracy of resonances is two, independently of the time
reversal invariance character of the interaction.

If we had considered the possibility 6f having more than two equal eigenvalues, we
could have had degeneracies of higher rank [11,19]. Triple degeneracies of resonances in
the absence of symmetry have already been observed by Latlai13] in a metallic
cavity excited by a wave guide. Explicit expressions for the codimension of a resonance
degeneracy of resonance eigenenergies for> 2, have been given by Mondrag and
Herrandez [11].

3.2. Energy surfaces in parameter space

Close to a degeneracy, the energy differencejs given by equation (14). From this
expression, the real and imaginary parts cdre

Rees = +[L[(R? — 11?2 + (R-T) + (R? — 2] (19)
and
Imes = F[LI(R? - ir)? + (R-T)Y]? — (R? — ird)). (20)

These equations define two hypersurfaces in parameter space. We are interested in the
shape of the energy surfaces in the neighbourhood of a crossing resulting from the accidental
degeneracy of two resonant states.

First, we shall consider the accidental degeneracy of two resonances leading to a rank
one degenerate Hamiltonian matrix. In this case, the conditions for accidental degeneracy,
equations (17) and (18), are only satisfied for vanistihigndT'. As shown in section 3.1,
the submatrixH,,> should have at least four free real linearly independent parameters to
bring about a degeneracy of this type. There are only three independent parameRers in
Hence,I' cannot be a fixed vector. SindB and I should vary independently of each
other, it will be convenient to understand equations (19) and (20) as defining the energy
hypersurfaces in an eight-dimensional Euclidean spdgge,with Cartesian coordinates
{X,Y,Z,u,v,w, Ree, Ime}. The coordinatesX, Y, Z) are the Cartesian components of
R, while (u, v, w) are those ofl". In this representation the crossing takes place at the
origin of coordinates, that is, whe® = 0 andT’ = 0.

When the Hermitian and anti-Hermitian parts Hf commute the problem simplifies.
From

[R-o,T-0]=i(RxT)-0 (21)
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it follows that, whenR - T" andT" - 0 commute,R x I' vanishes and? - I" is equal toRT.
Then, the equations of the energy, (19) and (20), take the simple form

Reey = +|R| = £V X2+ Y2 + 72 (22)
and
Imei=¢%|l“| :q:%\/u2+v2+w2. (23)

In this particularly simple case the two hypersurfaces which represent the real and
imaginary parts of the energy are double cones lying in orthogonal subspaces with the
apices at the origin.

In generalR - o andI' - o do not commute and? x I' may be written askI" siné
with siné # 0. To study the behaviour of the energy hypersurfaces close to the crossing
point, we will approach the origin of coordinates keepiRg I'/RI" = cosh fixed and let
R andT go to zero in such a way that the ratRy " is constant. Expanding the right-hand
sides of (19) and (20) in powers @2R/I")> whenR < 3T, or in powers ofI'/2R)? when
R > %F, and keeping only the terms of lowest order, we obtain

REGi::l:()[|R|=j:a X2+Y2+Z2 (24)
Imes > FALM| = FAIVUZ + v2 + w? (25)
where the factors,, 8 are R - I and 1 respectively, ifR < II'; whenR = IT', « andp

are both equal tq/ IR - T finally, whenR > iI', « and g are 1 andR - ", respectively.
Therefore, close to a crossing of rank one, the hypersurfaces representing the real and
imaginary parts of the energy are two double cones lying in orthogonal subspaces with their
apices at the same point, which, for this reason may be called a double diabolical point.
Now, let us consider the shape of the energy hypersurfaces close to a degeneracy of two
resonances of rank two. In this case, the conditions for accidental degeneracy, equations (17)
and (18), are satisfied for non-vanishing valueddéndI" and, as shown in section 3.1, we
need at least two free real parametergro bring about the degeneracy. For definiteness,
we will keep the anti-Hermitian part of the Hamiltonian matrix fixed and let the parameters
of the Hermitian part oH,., vary. Then,I' - o is a constant matrixI" is a fixed vector
and R may vary. To simplify the notation, it is convenient to choose the OZ axis aligned
with T'. This may be acomplished by means of a similarity transformatiofi{ ofhich
diagonalized - o.
In the case under consideration, equations (19) and (20) define two hypersurfaces in
a five-dimensional Euclidean spac&;, with Cartesian coordinategX, Y, Z, Ree, Ime}.
The hypersurfaces representing &kand Ime are in orthogonal subspaces and touch each
other only when both Re and Ime vanish. Therefore, the set of points in the energy
hypersurfaces corresponding to a degeneracy are all in the subSpaggh Cartesian
coordinate§ X, Y, Z, 0, 0}.
The second degeneracy condition, equation (18), requiRgsto be orthogonal to
I', and defines a planél in & and a hyperpland] in & with Cartesian coordinates
{X,Y,0,Ree, Ime}. The first degeneracy condition, equation (17), is the equation of a
circle of radius%l" in the IT-plane, which we will call the diabolical circle.
In order to have an idea of the shape of the energy hypersurfaces in the neighbourhood of
the crossing, let us consider the surface resulting from the intersection efhtyygersurface
and thell-hyperplane. The equations of this surface are obtained by puling = 0 in
(19) and (20), then

Reé, = +1[{[(R? — 11?2 + (R? - ir?)]2 (26)
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and
Iméx = F[HI(R? — iT?% — (R? - ir?)))2. 27)
Hence, whenk? > 112,
Reé. = £(R? — irdi (28)
and
IméL =0 (29)

the energy difference is purely real. Equation (28) defines a hyperbolic cone of circular
cross section in parameter space,

X?+Y?— (Reé)®> = ;I (30)
As shown in figure 1, the diabolical circle is at the narrowest cross section or ‘waist’
of the cone where Revanishes and the two complex energy eigenvalues are equal.

ReE
f

Diabolical :
circle Re €

Figure 1. Close to a crossing of resonances, the surface which represents the real part of
the energy difference in parameter space has the shape of a hyperbolic cone of circular cross
section or diabolo. The two resonances are degenerate at the narrowest cross section or waist
of the diabolo, also called the diabolical circle.

Similarly, whenR? < 7I'2,
ReéL =0 (31)
and
Imé. = T(Ar? — R?): (32)
now, the energy differenceis purely imaginary. This is the equation of a sphere of radius
2
X2+ Y%+ (mé® = 1r2 (33)

The diabolical circle is at the equator of the sphere, where the energy diffeéence
vanishes, and the two hypersurfaces touch each other, see figure 2.
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4

Diabolical
circle

Figure 2. The surface which represents the imaginary part of the difference of the two energies

in parameter space close to a degeneracy is a sphere. The upper and lower hemispheres represent
the imaginary parts of the two neighbouring energigs E». The equator coincides with the
diabolical circle.

Off degeneracy(R? # ;111‘2), the matrixH that mixes the two interfering resonances is

M= (5’1 _En> (34)

whereé andn are short hand foX —iY andZ — i%F, respectively.’H has two right and
two left eigenvectors and may be diagonalized by a similarity transformation

K HK = (‘06 S) (35)
where
Kzl( VeF V=T ) (36)
V2e \ Ve —nE*/IEl Je+nET/IEl )

When the conditions for a degenerad§? = 3I'?) is satisfied, de vanishes and the
matrix K~1 no longer exists. Therefore, at the degeneragycannot be diagonalized by
means of a similarity transformation. In this cag¢takes the form

1 (- e
This matrix has only one right eigenvectdl;) and one left eigenvectdg,|, belonging

to the eigenvalue; = 0. It also has one generalized right eigenvediy) and one
generalized left eigenvectd€,| belonging to the same eigenvalage= 0, and such that

Hyl&;) = 01&g) + |Ea) (38)

and a similar expression fg€,|. In consequence, the eigenvectorsHyf andH,; do not
form a complete basis. We may add the generalized eigenvector to the set of eigenvectors
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to have a complete basis. Then, any vector may be expanded in this basis. However, one
should keep in mind that, althoudl,) and |£,) are orthogonal to all left eigenvectors
belonging to all the other non-degenerate eigenvalues, the orthonormality rules for the
degenerate eigenvectors are

(Eal€a) = (Eal&q) =0 (39)
and
(Eal&a) = (Eal&q) = L. (40)

At degeneracy, that is, on the diabolical circl¢, is equivalent to a Jordan block of
rank two

1
M~ 1H,M = (8 25 ) (41)
where
ez 0
= ( igid/2 ei¢/2> . (42)

Therefore, although{ andH are continuous functions of the parametéxs Y, Z) for
all values ofX, Y, and Z, both the Jordan normal forms and the similarity transformations
leading to them are discontinuous functionsXafY, and Z on all points on the diabolical
circle.

In brief, we have shown that, in the case of a resonance degeneracy of rank two, close
to the crossing, the energy surface has two pieces which lie in orthogonal subspaces. The
surface which represents the real part of the energy has the shape of an open sandglass
or diabolo, with its waist at the diabolical circle. The surface representing the imaginary
part of the energy is a sphere. The two surfaces are embedded in orthogonal subspaces but
touch each other at all points on the diabolical circle. To the points on the diabolical circle
correspond degenerate matrices with one Jordan block of rank two, and to the points off the
diabolical circle correspond matrices with simple, that is, non-degenerate eigenvalues. It is
convenient to recall that when there are multiple eigenvalues, the reduction of a matrix to the
Jordan normal form is not a stable operation. Indeed, in the presence of multiple eigenvalues
an arbitrarily small change in the matrix may change the Jordan normal form completely.
However, when we are dealing with a family of matrices depending on parameters, multiple
eigenvalues are unremovable by a small perturbation. In this latter case, we can reduce every
individual matrix of the family to a Jordan normal form, but both this normal form and
the transformation leading to it depend discontinuously on the parameters. Therefore, the
diabolical circle is a continuous line of singularities of the family of matrices, unremovable
by a small perturbation.

4. Berry phase of a resonant state

4.1. Geometric phase of a resonant state

After having examined the topology of the energy surfaces close to a crossing of resonances,
let us go back to the expansion of the wavefunctiorof the perturbed system in terms of
bound and resonant energy eigenstates of the unperturbed Hamiltonian,

W= 1g(E))an(0) + / 10 (ks £))b(k, 1) dk (43)
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the summation runs over all bound and resonant staté€,of\s before, in the following
we will disregard the non-resonating background due to the integral over the continuum of
scattering wavefunctions of complex wave number. In this approximation

HV = Z {Iw(&)) Z Hm,,,(C,-(r))an(z)}, (44)

When the collective parameters change slowly with time, the perturbation Aetd; (r))
is an implicit function of time. In this case the complex non-Hermitian matriis also an
implicit function of time

Hyp = EQ8,0 + (@ Hi(Ci (1)) 9. (45)

For values of the external parameters off the diabolical citdldhas no repeated
eigenvalues, in consequence, it may be brought to diagonal form by means of a similarity
transformation

KHK = E (46)

where E is the diagonal matrix of the energy eigenvalues. The columns in the niatrix
are the instantaneous right eigenvector#agiven by

H(C0)1® (1) = &)1 (). (47)
In an obvious notation
K= (1¢D),16@), ... 1), ... 1o™)). (48)
The rows inK—! are the corresponding left eigenvectorsHyfproperly normalized:
@19) = 5. (49)

With the help of K we obtain the adiabatic basi§lg,(&; C;(¢)))}, of instantaneous
bound and resonant states of the complete HamiltoRian

165 &3 Ce)) = Y 19w (ED) Kon s (Ci (1)) (50)

and their adjoints
(@s(&i; Ci(0)| = Z(K_l(t))sn {(@n(EDI. (51)
We may now write the expansion of as an expansion in instantaneous energy
eigenfunctiong|¢, (&;; C;(1)))} of H,
W= o (&, Cit))as (1) (52)

where

as(t) = Y (K™H0)snatn (1) (53)

Similarly, the expansion off ¥ becomes
HWY =) |9, (&: Ci(0))E (1) (1). (54)

Substitution of (52) and (54) in the time-dependent 8dimger equation (1) gives the
set of coupled equations
da, (¢)
dr

.o . dR, A
+ D (BIVrn) - - () = €0 (1), (55)

m=1
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It will be assumed that the non-adiabatic transition amplitudes are very small,

1],. . . dR,
TA ((Pv|VR(Pm> | K 1 m # A\ (56)
|a | dr
Then, we can make the approximation
1 da, A R .. dR
—— ~ —i&(t) — (5| VROs) + —. 57
i d IE5(1) = (@s|VRds) -~ (57)
Integrating both sides, we obtain
C _
(1) =exp|:—;_l / &) dt’j|e'y“&s(0) (58)
to

where the first factor is the complex dynamical phase, whereas the second one is the complex
Berry phase given by

vy =i / (% 1Vrdy) - AR (59)

in this expressiore is the path traced by the system in parameter space wigoes from
to to t.

The right-hand side of (59) may be written as a surface integral with the help of Stokes
theorem,

=i [ [ @ITabn) x @l Tad) 0B (60)
m#s X JoX=c

where X is a surface bounded by the curge This expression may be written in a more
convenient form by means of the identity

. . 1
((ps|vR(pm> = é\m _ év <¢S|VRH1|(pm) (61)
then,
s |Vr Hy|@pm om| Ve Hi|@s) - X
” =iZ/f (95| Vr Hilg )AX (<PA| 2R 1l9s) (62)
m#s J E JIx=c (gs _gm)

provided the surfac& does not cross the diabolical circle where the denominator vanishes.

4.2. Computation of the geometric phase

Explicit expressions for the Berry phagein terms of our parametrization of the interaction
Hamiltonian may easily be obtained. We recall that the unperturbed Hamiltonian and
its bound and resonant energy eigenfunctions are independent of time. Hence, the time
dependence of the bound and resonant instantaneous energy eigenstates of the perturbed
system is entirely contained in the matkx which is a function of time through the time
dependence of the external parameters. Therefore, from equation (50)

IVr@s (& Ci(0)) =D 1w (ED) (VRK) s (63)

m

When this expression is substituted in (59), and use is made of the bi-orthonormality of
the set of unperturbed bound and resonant eigenfunctions, we get

v =i / [K-L(VxK)],, - dR. (64)
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The geometric phase is now written as a path integral of the diagonal elements of the product
of the inverse and the gradient (in parameter space) of the niéfrixhich diagonalizes
the matrixH. This expression foy, is equivalent to (59). In the case of a finite number
of interfering resonant states which may become degenerate, all other bound or resonant
energy eigenstates being non-degenerate, we may safely assurhkishdiagonal except
for a square diagonal block which mixes the interfering resonances. In thiskcésa
finite matrix and the evaluation of the integrand in the right-hand side of (64) involves only
the product of two finite matrices and no integration over the particle coordinates of the
microscopic internal components of the system is involved, as would seem to be the case
in the evaluation of ¢, |Vr@y).

Furthermore, from (48) we see that the columnsVpK are the gradients of the
instantaneous right eigenvectorstdf Therefore,y, may also be written as

Vs = [ /<¢.Y|VR¢.§') -dR. (65)

From (64) we may derive a nice sum rule for the geometric phases of the interfering
resonante states,

>y =i / tr[K~%(VzK)] - dR. (66)

This is a topological invariant, namely, the first Chern class [21], as will be shown below
in the case of two interfering states.

Let us consider now the particular case of a system with two resonant states strongly
mixed by the external interaction, which may become degenerate by a small variation of
the external parameters while all other bound or resonant states remain non-degenerate. In
this case the system is in a domain in parameter space which contains one and only one
closed line of singularites oK which is topologically equivalent to the diabolical circle
corresponding to an accidental degeneracy of the two interfering resonant states. Then, we
may safely assume that is diagonal except for a 2 block H,,2. The matrixK which
diagonalizeH,,, is given in (36).

The matricek ! and VxK are readily obtained from (14) and (36),

Kl_l(\/e‘i‘n Je—né&/l§l > (67)

C V2e \Ve—n —Je+nE/lE|
and
_ ot 1 ity L 1 &
VK‘@K JZK+26M1)(R '2F>+ZFMZN'F(eZ—nZ)|$|M3(FXR)}
(68)
where the matriceM;, My, and M3 are
1 1 0
IMi+My) ==
1 0 1
IM =My = ——— 7

and
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Then, a straightforward calculation gives

1 1
and
1 1
yzz—éfcm(er)-dR. (73)

These expressions are very similar to the well known results obtained for the geometric
phase of bound states [1]. An obvious difference is that the geometric phase of resonant
states is complex sineeandn are complex functions of the parametd®sandI’. There is
another important but less apparent difference. In the case of an accidental degeneracy of
resonancesl” ## 0), the denominator on the right-hand side of (72) and (73) vanishes on the
continuous line of singularities we have called the diabolical circle, and not at one isolated
point as is the case for bound statds = 0). It follows that two kinds of non-trivial,
topologically inequivalent closed paths are possible, as shown in figure 3. First, those paths
which surround or encircle the diabolical circle but are not linked to it. Second, the closed
paths which are linked to the diabolical circle. Paths of the first kind are clearly analogous
to the non-trivial paths that go around the diabolical point while paths of the second kind
have no analogue in accidental degeneracies of bound states.

Diabolical

Circle e . c
.‘ I

ReE ——

Figure 3. In the evaluation of the Berry phase of two interfering resonances there are two kinds
of non-trivial, topologically inequivalent closed paths in parameter space. First, thos€;like
which go around the diabolical circle but are not linked to it. Second, thoselik&, which

turn around the diabolical circle and are linked to it.

For paths of the first kind it is always possible to find a surfacevhich spans the
closed pathc and does not cross the diabolical circle. Then, using Stokes theorem we may
write the geometric phasg as a surface integral. Computing directly from (72) and (73),

we get

K i1

(1)// (R—i3I)-dS 74
a,=c [(R— IlI‘)Z]z

wheres = 1, 2. Sincey, changes intg,;, when X, and X, are exchanged and the sign of

dS is changed, the normals fal, and £, should be oppositely oriented. If we say tidat

points upwards, theX; is abovec and X, is belowec.

This is, of course, the same result as would have been obtained from the general
expression (62) and our parametrization of the perturbation term in the Hamiltonian, no
summation over intermediate states occurs in (74) since in the simple case of only two
interfering resonant states the summation in (62) has only one term.
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Adding y; andy,, the sum rule is written as a surface integral
1/ (R—i3I)-dS

B o 1o 3

2J)s Jox KIB—W%F)H?

where X is a closed surface with the diabolical circle completely contained in its interior,

dS is the surface element normal .

The integral in (75) is easily computed whéhis a sphere with radiu® > %F, the
result is

vitya=— (75)

Y1+ y2=—2m. (76)

It is now easy to show that the resonance degeneracy produces a continuous distribution
of singularities on the diabolical circle. To this end, we convert the surface integral (75) to
a volume integral using Gauss theorem. Then,

yity2= / / / ( (;R__.:ﬂl;z])dv (77)

whereV is the volume insidez and bounded by it. The term in round brackets under the
integration sign vanishes when# 0. Therefore, the non-vanishing value af+ 3, implies
the occurrence of-function singularities of the integrand on those points wkevanishes

Hence,

—ilr R-1r

Vg - _R-ir .|2 . =_73( 2 )8(0059) (78)
[(R—i3T)2]2 R?

the factorR—2 multiplying the delta function is needed to reproduce the valu@Ry; + y».

We may say that, instead of having the fictitious magnetic charge on the ‘monopole’
singularity characteristic of the accidental degeneracy of bound states, in the case of
an accidental degeneracy of resonant states the fictitious magnetic charge is evenly and
continuously distributed on the closed line of singularities we have called the diabolical
circle.

Now, let us consider the difference between geometric phases of resonant and bound
states. With this purpose in mind we rewrite (72) and (73) as

. 1[(I‘xR)-dRilfn(I‘xR)-dR
2= 75 ) T@—n) T 2). Tee@—n?
These expressions take a simple and transparent form when we change from Cartesian
coordinates X, Y, Z), with O Z parallel toI', to spherical coordinated®, 0, ¢) in parameter

space. Then, (79) becomes

(R cost —|1F)d¢
nr=—/®¢ / (80)
\/ — iR cosh

(79)

the pathc is specified wherR and6 are given as functions af.
The sum rule for the geometric phases takes the form

n+n=—/w. (81)

This result is valid for all pathg, it is also valid for bound or resonant states.
For closed paths of the first kind which go once around the diabolical circle

yi+y2=—21 ¢ of first kind. (82)
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This result is valid for all pathg’, independently of the shape of’. It is of course,
the same result we obtained using the surface integral representation.
Still in the case of closed paths of the first kind, we may rearrange (80) as

yi2=—1 /Cm[l T cosf]dy + Ay (83)

where

(ii1 — 2R cost) + (R — \/RZ — 112 _ IR cos)

1
Ay = IfF/ do. (84)
4 Jev [Rz— 112 —iRT cosf[R — \/R? — 12 —iRT cosd]

The first term in the right-hand side of (83) is the well known expression for the Berry
phase of two interfering bound states adiabatically transported in parameter space around
an accidental degeneracy. The second term gives the difference of the actual Berry phase
of the resonant state and the phase of a bound state,

S =709+ Ay(c”) " of the first kind (85)

as shown in (84)Ay is proportional tol' and vanishes for vanishing.

Therefore, the Berry phase acquired by a resonant state when it is transported in
parameter space around the diabolical circle in a path not linked to it is equal to the sum of
the real geometric phase a bound state would have acquired if transported around the same
path, plus a complex correction term characteristic of resonant states.

In the case of closed paths of the second kind, that is, those paths which are linked to
the diabolical circle, there is no surfagewhich spans the closed patf" without crossing
the diabolical circle, see figure 3. Therefore we may not use Stokes theorem to convert the
path integral into a surface integral. However, we may still compute the geometric phase
from the path integral,

For closed paths which are linked to the diabolical circle, the sum rule gives zero,

ntre= —/ dp =0 c"" of second kind (86)
ch

since, in this case, the angfestarts out at some initial valugy and, as the system traces
the pathc, it oscillates between a minimum and maximum values and finally ends at the
same initial valuepg.

The difference betweep andy, may be obtained from (80),

yi2 = Ay () (87)

whereAy (¢) is given by an expression similar to (84). There is no analogue to this case
in bound states.

5. Validity of the adiabatic approximation

The present calculation of the Berry phase of a resonant energy eigenstate is based upon the
adiabatic approximation. In general, there seems to be some incompatibility between the
decay of the system, that is, the vanishing of the signal and adiabaticity, i.e. slow motion. A
rough estimation of the validity of the adiabatic approximation in this case may be obtained
from the criterion given in Messiah [22],

max|@s
"‘” <1 88)

min |, )
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where max denotes maximum angular frequency of and min denotes minimum Bohr
frequency of, which, in our notation means

Fmax] | X, (@1 /dr)|}

1. 89
min(é, =&} (89)
Now, recalling the relation
A d(/AJm 1 A de_ ~
s | g, = s - A T m 90
<‘” dr > En— &) <‘p dr | > (°0)

and calling

AE = min{|& — &,} (91)
the condition (89) becomes

h max{|(¢;|dH1/dt|m) 1}

1 92
(AE)? < (©2)
If T is some typical time of the driving Hamiltonian, such that
. |dHL] . 1. R
A m = = A H m 93
<<0 a ¢ > 7 (@5 Hal@m)| (93)

T should not be so long that the signal cannot be measured. Hence, it seems reasonable to
estimateT from the largest half width of the interfering resonances:

h
T ~ .
Fmax
Hence, a rough criterion for the validity of the adiabatic approximation for unstable
states would be

max{|<¢7s|Hl|€2m>|}Fmax
(AE)?

where max| (¢, | H1|@, )|} indicates the maximum value along the path traced by the system
in parameter space.

(94)

<1 (95)

6. Results and conclusions

The purpose of the foregoing has been to discuss the adiabatic evolution of an open quantum

system in a state which is a superposition of resonant states and evolves irreversibly due to

the spontaneous decay of the unstable states. More specifically, we studied the geometric

phase acquired by the resonant states when they are adiabatically transported in parameter
space by the mixing interaction around a degeneracy of resonances.

In the case of two resonant states mixed by a Hermitian interaction we find two
kinds of accidental degeneracies which may be characterized by the number and length
of the cycles of instantaneous energy eigenfunctions at the degeneracy. In the first case
there are two linearly independent eigenfunctions belonging to the same repeated energy
eigenvalue, that is, two cycles of length one. In the second case there is only one degenerate
resonant eigenstate and one generalized resonant eigenstate belonging to the same degenerate
(repeated) energy eigenvalue, i.e. one cycle of length two.

Accidental degeneracies of the first kind, or first rank, give rise to one ‘monopole’ point
singularity at a diabolical point in parameter space, as in the case of degeneracies of negative
energy bound states. In the present case the degenerate states are bound states of positive
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energy embedded in the continuum [20]. In degeneracies of the second kind, or second
rank, the fictitious magnetic charge is evenly and continuously distributed on a closed line

of singularities in parameter space, which is topologically equivalent to a ‘diabolical’ circle.
Only second rank degeneracies of two resonances produce a true degenerate resonant state.

Close to a degeneracy of first rank, the hypersurfaces which represent the real and
imaginary parts of the resonance energies in parameter space are two double cones lying in
orthogonal subspaces, with their vertices located at the same point, which for this reason
might be called a double diabolical point.

When the degeneracy is of the second rank, the topology of the energy surfaces is
different from that at a crossing of bound states. The energy surfaces of the two resonant
states that become degenerate are connected at all points in a circle. Close to the crossing,
the energy hypersurface has two pieces lying in orthogonal subspaces in parameter space.
The surface representing the real part of the energy has the shape of a hyperbolic cone
of circular cross section, or an open sandglass, with its waist at the diabolical circle. The
surface of the imaginary part of the energy is a sphere with the equator at the diabolical
circle. The two surfaces touch each other at all points on the diabolical circle.

In the case of two interfering resonant states, the geometric phase acquired by the
resonant states when transported around the diabolical circle in a closed path which is not
linked to it, may be written as the sum of two terms:

i5(Ch = yp3""(ChH + Ay(C). (96)

The first term,yfg““d(c'), is the real geometric phase which a negative energy eigenstate
would have acquired when transported around a diabolical point in a closed path in the same
parameter space. The second term is complex, it gives rise to a change of the phase and a
dilation of the resonant state eigenfunction. Its imaginary part may be positive or negative,
in consequence, it may produce an amplification or a damping of the wavefunction which
may compensate or reinforce the attenuation due to the imaginary part of the dynamical
phase factor. For long lived, narrow resonances, we may expedb be small compared
with yPound since it is proportional to the ratib/R which is roughly proportional to the
ratio of the width to the real part of the resonant energies.

When the resonant states are transported in a closed@atkhich does not go around
the diabolical circle but is linked to it, the geometric phase they acquire is

nsEC"y = £ay(C"). (97)

Since it is not possible to find a continuous surfatevhich spans the closed pag'
without crossing the diabolical circle, we can not make use of the theorem of Stokes to
convert the path integral into a surface integral. However, it may readily be computed as a
path integral from the expression

_it " . dR'
Ay(C”):/ (Z—iiN)(T x R)-dR

"I J(R—i3D)AX2+Y?)

which is obtained from (80) and (86). As in the previous casg(C") is complex and
produces changes of phase and dilations in the resonant state wavefunction. This case has
no analogue in bound states.

The sum of the geometric phases acquired by two interfering resonant states which
are transported around a degeneracy in a closed path in parameter space is a topological
invariant, namely the first Chern class [21]. For closed paths of the first kind its value is
the ‘magnetic charge’ on the diabolical circle, and it vanishes for paths of the second kind.

(98)
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In conclusion, we have shown that the Berry phase of resonant states differs in various
ways from that of bound states. It has some interesting mathematical properties not present
in the Berry phase of bound states. From the physical point of view it is also interesting
since it has a new term which produces dilations of the wavefunction and may give rise to
observable effects not present in the geometric phase factors of bound states.
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