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Abstract. We derive closed analytical expressions for the complex Berry phase of an open
quantum system in a state which is a superposition of resonant states and evolves irreversibly
due to the spontaneous decay of the metastable states. The codimension of an accidental
degeneracy of resonances and the geometry of the energy hypersurfaces close to a crossing of
resonances differ significantly from those of bound states. We discuss some of the consequences
of these differences for the geometric phase factors. For example, instead of a diabolical point
singularity there is a continuous closed line of singularities formally equivalent to a continuous
distribution of ‘magnetic’ charge on a diabolical circle, there are different classes of topologically
inequivalent non-trivial closed paths in parameter space, the topological invariant associated with
the sum of the geometric phases, dilations of the wavefunction due to the imaginary part of the
Berry phase and others.

1. Introduction

During the last ten years the geometric phase factors arising in the adiabatic evolution
of quantum systems [1] have been the subject of many investigations [2]. Most of the
early literature was concerned with the geometric phase factors of closed systems driven by
Hermitian Hamiltonians [3]. More recently there has been substantial interest in the complex
geometric phase acquired by the eigenstates of open quantum systems. This problem arises
naturally in connection with various experiments which, by their very essence, require
the observation of the Berry phase in metastable states (also called resonant or Gamow
states). Dattoliet al [4] studied the Berry phase in the optical supermode propagation in
a free electron laser, which is a classical system described by a Schrödinger-like equation
with a non-Hermitian Hamiltonian. The measurement of the geometric phase in atomic
systems with two energy levels, one of which at least is metastable, was also described in
terms of a non-Hermitian Hamiltonian by Miniaturaet al [5]. The validity of the adiabatic
approximation for dissipative, two level systems driven by non-Hermitian Hamiltonians
was examined by Nenciu and Rasche [6], and by Kvitsinsky and Putterman [7] who
also established that, in this case, the Berry phase is complex. A higher-order adiabatic
approximation for two-level non-Hermitian Hamiltonians was proposed by Sun [8], who
also showed that the holonomy structure associated to the Berry phase factor of the non-
Hermitian case is the non-unitary generalization of the holonomy structure of the Hermitian
case. In a previous paper, we gave closed analytical expressions for the geometric phase
of true resonant states [9] defined as energy eigenstates of a Hermitian Hamiltonian which
satisfy purely outgoing wave boundary conditions at infinity [10], and pointed out some
of the mathematically interesting and physically relevant properties resulting from the non-
self-adjointness of the problem. In this connection, later, we showed that the codimension
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of the accidental degeneracy ofn resonances and the topological structure of the energy
surfaces close to a crossing of resonances differ significantly from those of bound states
[11]. By means of a numerical analysis of the experimental data on the 2+ doublet of
resonances withT = 0, 1 in the energy spectrum of the nucleus8Be at about 16.6 and
17 MeV, we showed in a realistic example that a true crossing of resonances mixed by a
Hermitian interaction may be brought about by the variation of only two real independent
parameters [12]. Lauberet al [13] measured the geometric phase associated with a triple
degeneracy of resonances in a flat, non-symmetric, triangular microwave resonator.

In this paper we explore further the properties of the Berry phase of resonant states of a
Hermitian Hamiltonian with non-self-adjoint boundary conditions. The paper is organized
as follows. In section 2, we consider the time evolution of a quantum system in a state which
is a superposition of bound and unbound states evolving in the presence of an external field
of force which changes slowly with time. By means of an expansion of the wavefunction in
terms of bound and resonant states of the unperturbed system, we associate a complex non-
Hermitian matrix with the time evolution of the bound and resonant states evolving under
the action of the time-dependent perturbation. Accidental degeneracy of two resonances
and the properties of the energy hypersurfaces at the crossing of resonances are discussed
in section 3. In section 4 we derive general expressions for the Berry phase of resonant
states and discuss some of its properties. In section 5 we briefly discuss the validity of the
adiabatic approximation. The paper ends in section 6 with a short summary of results and
some conclusions.

2. Adiabatic mixing of resonant states

Let us consider the adiabatic time evolution of a quantum system in a state which is
a superposition of unstable states moving in some strong external field of force which
changes slowly with time. In order to have some concrete example in mind, although a
very hypothetical one, we may think of an8Be nucleus which has only unstable energy
eigenstates moving in the field of a heavy doubly magic nucleus, like208Pb, in a peripheral
collision in which the distance between the two nuclei is never much smaller than the sum of
the nuclear radii. In a semiclassical treatment of the collision, when the centres of the nuclei
move along given classical trajectories, the parameters in the nucleus–nucleus interaction
change with time [14]. Another example could be a highly excited Hydrogen atom in strong
external, crossed electric and magnetic fields. This system has no bound states, it has only
resonances [15]; when the external fields change slowly with time, the parameters in the
atom–field interaction change with time.

The evolution of the unstable quantum system under the influence of the external
perturbation is governed by the time-dependent Schrödinger equation

ih̄
∂9

∂t
= H9. (1)

The HamiltonianH is the sum of the time-independent HamiltonianH0 describing the
evolution of the unperturbed unstable system plus a perturbation termH1 parametrized in
terms of some set of external parameters{C1, C2, . . . , CN }.

The energy eigenfunctions of the unperturbed Hamiltomian are the solutions of the
equation

H0ϕm(ξi) = Emϕm(ξi) (2)

plus the appropriate boundary conditions.
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Assuming that in the absence of perturbation the unstable nucleus decays spontaneously
into two stable nuclear clusters, the unperturbed energy eigenfunctions may be written as
cluster model wavefunctions [16],

ϕm(ξi, ξj ) = A
{
φA(ξi)φB(ξj )

uAB(rAB)

rAB

YM
J (r̂AB)

}
(3)

whereφA andφB are the wavefunctions of the clusters A and B,uAB,m(rAB) is the radial
part of the wavefunction of the relative motion of the two clusters,YM

J (r̂AB) is a spherical
harmonic, andA is the antisymmetrizer. In our example,ϕm would be the eigenfuction of
a state of8Be which decays spontaneously in two4He clusters. In this case,uAB,m(rAB) is
a Gamow function which vanishes at the origin and behaves as a purely outgoing wave for
large values of the relative distancerAB,

1

uAB,m(rAB)

(
duAB,m(rAB)

dr

)
−→

rAB→∞ ikm. (4)

km is the complex wave number. This boundary condition is not self-adjoint, in consequence
the Gamow states are not orthogonal in the usual sense, and the energy eigenvalues are
complex, with ReEm > 0 and ImEm < 0. Nevertheless, bound and resonant states form a
bi-orthonormal set with their adjoints, which may be extended by a continuum of suitably
chosen scattering states of complex wave numberk to form a complete set in which any
square integrable function may be expanded. The rules of normalization, orthogonality, and
completeness satisfied by the eigenstates of the Schrödinger equation with local and non-
local potentials belonging to complex eigenvalues with ImEn < 0, (Gamow or resonant
states) are given in Mondragón et al [10]. A clear exposition of the properties of resonant
states may be found in the textbook by Böhm [17].

Since we are interested in the time evolution of the system in a state which is a
superposition of unstable states, we make an expansion of the wavefunction9 in terms
of bound and resonant states ofH0,

9 =
∑
m

am(t)ϕm(ξi) +
∫

C

b(k; t)ϕ(+)(k; ξ) dk. (5)

In general, the indexm runs over bound and resonant states. The scattering states
ϕ(+)(k, ξi) of complex wave numberk are defined by analytic continuation [10]. The
integration contourC in the complex wave number plane is a straight line with slope−1,
that goes through the origin. In this way we separate out of the continuum the resonance
contribution to9, which should be dominant for energies close to the real part of the
complex energy eigenvalues.

Substitution of (5) in (1) gives the set of coupled equations
dam(t)

dt
= − i

h̄
Emam(t) − i

h̄

∑
n

〈ϕm|H1|ϕn〉an(t) − i

h̄

∫
C

〈ϕm|H1|ϕ(+)(k)〉b(k; t) dk (6)

and a similar expression for db(k, t)/dt .

When the interactions are time reversal invariant, the dual of the complex Gamow
functionuAB,m(rAB) is the same function [10]. Since the bound-state cluster wavefunctions
φA andφB are real, the dual of the resonant-state wavefunctionϕm(ξi) is the same complex
functionϕm(ξi). When the interactions are not time reversal invariant, the Gamow function
and its dual are not the same function. We will use the notation|ϕm(ξi)〉for the Gamow
function and〈ϕm(ξi)| for its dual. Hence, the matrix element of the perturbation termH1

taken between bound or resonant states of the unperturbed system is given by

〈ϕm |H1| ϕn〉 =
∫ ∫

〈ϕm(ξi)|H1|ϕn(ξi)〉 dξ1 · · · dξi . (7)
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The matrixH with matrix elements

Hm,n = Emδm,n + 〈ϕm |H1| ϕn〉 (8)

is, in general, non-symmetric, complex, and non-Hermitian. When the forces acting on the
system are time reversal invariant,H is symmetric, but non-Hermitian. The dependence of
H1 on the external parameters is inherited byH which is also parametrized in terms of the
same set{C1, C2, . . . , Cn} of external parameters.

In the following we will be concerned with the adiabatic evolution of a system with two
resonant states very close in energy which are strongly mixed by the Hermitian interaction
H1. In our hypothetical example, these could be the two 2+ states of8Be with T = 0, 1 at
E1 = 16.622 MeV andE2 = 17.01 MeV. The contribution of the non-resonant background
integral over the continuum of scattering functions will play no part in the following
discussion. Therefore, to ease the notation, we will disregard the contribution of the
background scattering functions. In this approximation,

H9 =
∑
m

[ ∑
n

Hm,nan(t)

]
|ϕm(ξ)〉. (9)

Then, the set of equations (6) reduces to

ȧm(t) = − i

h̄

∑
n

Hm,nan(t) (10)

whereȧm(t) is the time derivative ofan(t).
The complex energy eigenvalues associated with the resonant states in the presence of

the perturbation will arise as the eigenvalues of the non-Hermitian matrixH associated,
through equation (10), with the decaying process.

3. Accidental degeneracy of resonances

Non-trivial geometric phase factors of the energy eigenvectors or eigenfunctions are related
to the occurrence of accidental degeneracies of the corresponding eigenvalues [1, 18].
In the previous section we associated a complexn × n, non-Hermitian matrixH with
an open quantum system withn resonances and resonant states. In the absence of
symmetry, degeneracies are called accidental for lack of an obvious reason to explain
why two energy eigenvalues,E1 and E2, of H should coincide. However, if the matrix
H is embedded in a population of complex non-Hermitian matrices{H(C1, C2, . . . , CN)}
smoothly parametrized byN external parameters(C1, C2, . . . , CN), degeneracy in the
absence of symmetry is a geometric property of the hypersurfaces representing the real
or complex eigenvalues ofH in a (N + 2)-dimensional Euclidean space with Cartesian
coordinates(C1, C2, . . . , CN, ReE, Im E). In contrast with the case of Hermitian matrices,
complex non-Hermitian matrices with repeated eigenvalues cannot always be brought to
diagonal form by a similarity transformation. This feature leads to a richer variety of
possibilities. Thus, it will be convenient to examine first the accidental degeneracy of two
resonances and the topology of the energy surfaces close to a crossing of resonances in
parameter space.

3.1. Degeneracy of two resonances

Since we are interested in the possibility of an accidental degeneracy in a system with two
resonant states strongly mixed by a Hermitian interaction, all other bound or resonant
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eigenstates being non-degenerate, we may suppose that we already know the correct
eigenvectors ofH for all the real and complex eigenenergiesEs , except for the two
corresponding to the crossing of which we want to investigate. Using for this two states
two vectors which are not eigenvectors but which are orthogonal to each other and to all
other eigenvectors, we obtain a complete basis to representH. In this basisH will be
diagonal except for the elementsH12 andH21. The diagonal elementsH11 andH22 will, in
general, be non-vanishing and different from each other. There is no loss of generality in
this supposition, since any complex matrixH may be brought to a Jordan canonical form by
means of a similarity transformation [19]. When the eigenvalues are equal,H2×2 is either
diagonal or equivalent to a Jordan block of rank two. Hence, in the following, we need
consider only the conditions for degeneracy of the submatrixH2×2.

It will be convenient to measure the resonance energies,E1andE2, from the centroid,
E , of the diagonal terms inH2×2, then,

H2×2 = E1 + H (11)

the traceless 2× 2 matrix H may be written in terms of the Pauli-matrix valued vector
σ = (σ1, σ2, σ3) as

H = (R − i 1
2Γ) · σ (12)

whereR andΓ are real vectors with Cartesian components(X1, X2, X3) and (01, 02, 03)

given by

Xi − i 1
20i = 1

2[Tr(Hσi)] (13)

when the forces acting on the system are time reversal invariant,X2 and02 vanish.
In the absence of more specific information about the external parametersCi , we will

parametrizeH in terms ofR and Γ, according to (11) and (12). It will be assumed that
Xi = Xi(C1, C2, . . . , CN) are bijective and define a homeomorphism of the manifold of the
external parameters onto the manifold of the complex, non-Hermitian 2× 2 matricesH2×2.

From (12), the eigenvalues ofH are given by

ε = ∓
√

(R − i 1
2Γ)2 (14)

and the corresponding eigenvalues ofH are

E1,2 = E ∓ ε. (15)

Then, E1 and E2 coincide whenε vanishes. Hence, the condition for accidental
degeneracy of the two interfering resonances may be written as√

(Rd − i 1
2Γd)2 = 0. (16)

Since real and imaginary parts should vanish, we get the pair of equations

R2
d − 1

402
d = 0 (17)

and

Rd · Γd = 0. (18)

These equations admit two kinds of solutions corresponding toH2×2 being or not being
diagonal at the degeneracy.

(i) When bothRd andΓd vanish, equations (17) and (18) define a point in parameter
space,H is diagonal at the degeneracy and the submatrixH2×2 has two cycles of eigenvectors
of length one. The two complex eigenvalues ofH which become degenerate migrate to
the real axis where they fuse into one real positive energy eigenvalue embedded in the
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continuum [20]. Since in this case all the Cartesian components ofRd and Γd should
vanish, the minimum number of external parameters that should be varied to produce a
degeneracy of two resonances to form a bound state embedded in the continuum is four or
six depending on the quantum system being or not being time reversal invariant.

(ii) In the second case, when the degeneracy conditions (17) and (18) are satisfied for
non-vanishingRd andΓd , these equations define a circle in parameter space. In this case
Hd does not vanish at the degeneracy and the correspondingHd is non-diagonal at the
degeneracy, its first Jordan blockH2×2 is of rank two and has one cycle of generalized
eigenvectors of length two, all other Jordan blocks have one cycle of length one. In this
case the two complex eigenvalues ofH which become degenerate fuse into one repeated
complex eigenvalueE . Since, the two linearly independent conditions (17) and (18) should
be satisfied for non-vanishing values ofRd andΓd , at least two real, linearly independent
parameters should be varied to produce a rank two degeneracy of resonances. Hence, the
codimension of a second rank degeneracy of resonances is two, independently of the time
reversal invariance character of the interaction.

If we had considered the possibility ofH having more than two equal eigenvalues, we
could have had degeneracies of higher rank [11, 19]. Triple degeneracies of resonances in
the absence of symmetry have already been observed by Lauberet al [13] in a metallic
cavity excited by a wave guide. Explicit expressions for the codimension of a resonance
degeneracy ofυ resonance eigenenergies forυ > 2, have been given by Mondragón and
Herńandez [11].

3.2. Energy surfaces in parameter space

Close to a degeneracy, the energy difference,ε, is given by equation (14). From this
expression, the real and imaginary parts ofε are

Reε± = ±[ 1
2{[(R2 − 1

402)2 + (R · Γ)2]
1
2 + (R2 − 1

402)}] 1
2 (19)

and

Im ε± = ∓[ 1
2{[(R2 − 1

402)2 + (R · Γ)2]
1
2 − (R2 − 1

402)}] 1
2 . (20)

These equations define two hypersurfaces in parameter space. We are interested in the
shape of the energy surfaces in the neighbourhood of a crossing resulting from the accidental
degeneracy of two resonant states.

First, we shall consider the accidental degeneracy of two resonances leading to a rank
one degenerate Hamiltonian matrix. In this case, the conditions for accidental degeneracy,
equations (17) and (18), are only satisfied for vanishingR andΓ. As shown in section 3.1,
the submatrixH2×2 should have at least four free real linearly independent parameters to
bring about a degeneracy of this type. There are only three independent parameters inR.
Hence,Γ cannot be a fixed vector. SinceR and Γ should vary independently of each
other, it will be convenient to understand equations (19) and (20) as defining the energy
hypersurfaces in an eight-dimensional Euclidean space,E8, with Cartesian coordinates
{X, Y, Z, u, v, w, Reε, Im ε}. The coordinates(X, Y, Z) are the Cartesian components of
R, while (u, v, w) are those ofΓ. In this representation the crossing takes place at the
origin of coordinates, that is, whereR = 0 andΓ = 0.

When the Hermitian and anti-Hermitian parts ofH commute the problem simplifies.
From

[R · σ,Γ · σ] = i(R × Γ) · σ (21)
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it follows that, whenR · Γ andΓ · σ commute,R × Γ vanishes andR · Γ is equal toR0.
Then, the equations of the energy, (19) and (20), take the simple form

Reε± = ±|R| = ±
√

X2 + Y 2 + Z2 (22)

and

Im ε± = ∓ 1
2|0| = ∓ 1

2

√
u2 + v2 + w2. (23)

In this particularly simple case the two hypersurfaces which represent the real and
imaginary parts of the energy are double cones lying in orthogonal subspaces with the
apices at the origin.

In generalR · σ and Γ · σ do not commute andR × Γ may be written asR0 sinθ

with sinθ 6= 0. To study the behaviour of the energy hypersurfaces close to the crossing
point, we will approach the origin of coordinates keepingR · Γ/R0 = cosθ fixed and let
R and0 go to zero in such a way that the ratioR/0 is constant. Expanding the right-hand
sides of (19) and (20) in powers of(2R/0)2 whenR < 1

20, or in powers of(0/2R)2 when
R > 1

20, and keeping only the terms of lowest order, we obtain

Reε± ' ±α|R| = ±α
√

X2 + Y 2 + Z2 (24)

Im ε± ' ∓β 1
2|0| = ∓β 1

2

√
u2 + v2 + w2 (25)

where the factorsα, β are R̂ · 0̂ and 1, respectively, ifR < 1
20; whenR = 1

20, α andβ

are both equal to
√

1
2R̂ · 0̂; finally, whenR > 1

20, α andβ are 1 andR̂ · 0̂, respectively.
Therefore, close to a crossing of rank one, the hypersurfaces representing the real and

imaginary parts of the energy are two double cones lying in orthogonal subspaces with their
apices at the same point, which, for this reason may be called a double diabolical point.

Now, let us consider the shape of the energy hypersurfaces close to a degeneracy of two
resonances of rank two. In this case, the conditions for accidental degeneracy, equations (17)
and (18), are satisfied for non-vanishing values ofR andΓ and, as shown in section 3.1, we
need at least two free real parameters inH to bring about the degeneracy. For definiteness,
we will keep the anti-Hermitian part of the Hamiltonian matrix fixed and let the parameters
of the Hermitian part ofH2×2 vary. Then,Γ · σ is a constant matrix,Γ is a fixed vector
andR may vary. To simplify the notation, it is convenient to choose the OZ axis aligned
with Γ. This may be acomplished by means of a similarity transformation ofH which
diagonalizesΓ · σ.

In the case under consideration, equations (19) and (20) define two hypersurfaces in
a five-dimensional Euclidean space,E5, with Cartesian coordinates{X, Y, Z, Reε, Im ε}.
The hypersurfaces representing Reε and Imε are in orthogonal subspaces and touch each
other only when both Reε and Imε vanish. Therefore, the set of points in the energy
hypersurfaces corresponding to a degeneracy are all in the subspaceE3 with Cartesian
coordinates{X, Y, Z, 0, 0}.

The second degeneracy condition, equation (18), requiresRd to be orthogonal to
Γ, and defines a plane5 in E3 and a hyperplanê5 in E5 with Cartesian coordinates
{X, Y, 0, Reε, Im ε}. The first degeneracy condition, equation (17), is the equation of a
circle of radius1

20 in the 5-plane, which we will call the diabolical circle.
In order to have an idea of the shape of the energy hypersurfaces in the neighbourhood of

the crossing, let us consider the surface resulting from the intersection of theε-hypersurface
and the5̂-hyperplane. The equations of this surface are obtained by puttingR · Γ = 0 in
(19) and (20), then

Reε̂± = ±t [ 1
2{[(R2 − 1

402)2]
1
2 + (R2 − 1

402)}] 1
2 (26)
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and

Im ε̂± = ∓[ 1
2{[(R2 − 1

402)2]
1
2 − (R2 − 1

402)}] 1
2 . (27)

Hence, whenR2 > 1
402,

Reε̂± = ±(R2 − 1
402)

1
2 (28)

and

Im ε̂± = 0 (29)

the energy difference is purely real. Equation (28) defines a hyperbolic cone of circular
cross section in parameter space,

X2 + Y 2 − (Reε̂)2 = 1
402. (30)

As shown in figure 1, the diabolical circle is at the narrowest cross section or ‘waist’
of the cone where Rêε vanishes and the two complex energy eigenvalues are equal.

Figure 1. Close to a crossing of resonances, the surface which represents the real part of
the energy difference in parameter space has the shape of a hyperbolic cone of circular cross
section or diabolo. The two resonances are degenerate at the narrowest cross section or waist
of the diabolo, also called the diabolical circle.

Similarly, whenR2 6 1
402,

Reε̂± = 0 (31)

and

Im ε̂± = ∓( 1
402 − R2)

1
2 (32)

now, the energy differencêε is purely imaginary. This is the equation of a sphere of radius
1
20,

X2 + Y 2 + (Im ε̂)2 = 1
402. (33)

The diabolical circle is at the equator of the sphere, where the energy differenceε̂

vanishes, and the two hypersurfaces touch each other, see figure 2.
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Figure 2. The surface which represents the imaginary part of the difference of the two energies
in parameter space close to a degeneracy is a sphere. The upper and lower hemispheres represent
the imaginary parts of the two neighbouring energiesE1, E2. The equator coincides with the
diabolical circle.

Off degeneracy(R2 6= 1
402), the matrixH that mixes the two interfering resonances is

H =
(

η ξ

ξ ∗ −η

)
. (34)

whereξ andη are short hand forX − iY andZ − i 1
20, respectively.H has two right and

two left eigenvectors and may be diagonalized by a similarity transformation

K−1HK =
( −ε 0

0 ε

)
(35)

where

K = 1√
2ε

( √
ε + η

√
ε − η√

ε − ηξ ∗/|ξ | √
ε + ηξ ∗/|ξ |

)
. (36)

When the conditions for a degeneracy(R2 = 1
402) is satisfied, detK vanishes and the

matrix K−1 no longer exists. Therefore, at the degeneracyHd cannot be diagonalized by
means of a similarity transformation. In this case,H takes the form

Hd = 1

2
0

( −i e−iφ

eiφ i

)
. (37)

This matrix has only one right eigenvector|Ed〉 and one left eigenvector〈Ed |, belonging
to the eigenvalueεd = 0. It also has one generalized right eigenvector|Ed〉 and one
generalized left eigenvector〈Ed | belonging to the same eigenvalueεd = 0, and such that

Hd |Ed〉 = 0|Ed〉 + |Ed〉 (38)

and a similar expression for〈Ed |. In consequence, the eigenvectors ofHd and Hd do not
form a complete basis. We may add the generalized eigenvector to the set of eigenvectors



2576 A Mondragón and E Hern´andez

to have a complete basis. Then, any vector may be expanded in this basis. However, one
should keep in mind that, although|Ed〉 and |Ed〉 are orthogonal to all left eigenvectors
belonging to all the other non-degenerate eigenvalues, the orthonormality rules for the
degenerate eigenvectors are

〈Ed |Ed〉 = 〈Ed |Ed〉 = 0 (39)

and

〈Ed |Ed〉 = 〈Ed |Ed〉 = 1. (40)

At degeneracy, that is, on the diabolical circle,Hd is equivalent to a Jordan block of
rank two

M−1HdM =
(

0 1
20

0 0

)
(41)

where

M =
(

e−iφ/2 0
ieiφ/2 eiφ/2

)
. (42)

Therefore, althoughH andH are continuous functions of the parameters(X, Y, Z) for
all values ofX, Y , andZ, both the Jordan normal forms and the similarity transformations
leading to them are discontinuous functions ofX, Y , andZ on all points on the diabolical
circle.

In brief, we have shown that, in the case of a resonance degeneracy of rank two, close
to the crossing, the energy surface has two pieces which lie in orthogonal subspaces. The
surface which represents the real part of the energy has the shape of an open sandglass
or diabolo, with its waist at the diabolical circle. The surface representing the imaginary
part of the energy is a sphere. The two surfaces are embedded in orthogonal subspaces but
touch each other at all points on the diabolical circle. To the points on the diabolical circle
correspond degenerate matrices with one Jordan block of rank two, and to the points off the
diabolical circle correspond matrices with simple, that is, non-degenerate eigenvalues. It is
convenient to recall that when there are multiple eigenvalues, the reduction of a matrix to the
Jordan normal form is not a stable operation. Indeed, in the presence of multiple eigenvalues
an arbitrarily small change in the matrix may change the Jordan normal form completely.
However, when we are dealing with a family of matrices depending on parameters, multiple
eigenvalues are unremovable by a small perturbation. In this latter case, we can reduce every
individual matrix of the family to a Jordan normal form, but both this normal form and
the transformation leading to it depend discontinuously on the parameters. Therefore, the
diabolical circle is a continuous line of singularities of the family of matrices, unremovable
by a small perturbation.

4. Berry phase of a resonant state

4.1. Geometric phase of a resonant state

After having examined the topology of the energy surfaces close to a crossing of resonances,
let us go back to the expansion of the wavefunction9 of the perturbed system in terms of
bound and resonant energy eigenstates of the unperturbed Hamiltonian,

9 =
∑
m

|ϕm(ξi)〉am(t) +
∫

c

|ϕ(+)(k; ξi)〉b(k, t) dk (43)
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the summation runs over all bound and resonant states ofH0. As before, in the following
we will disregard the non-resonating background due to the integral over the continuum of
scattering wavefunctions of complex wave number. In this approximation

H9 =
∑
m

{
|ϕm(ξi)〉

∑
n

Hm,n(Ci(t))an(t)

}
. (44)

When the collective parameters change slowly with time, the perturbation termH1(Ci(t))

is an implicit function of time. In this case the complex non-Hermitian matrixH is also an
implicit function of time

Hm,n = E (0)
m δm,n + 〈ϕm|H1(Ci(t))|ϕn〉. (45)

For values of the external parameters off the diabolical circleH has no repeated
eigenvalues, in consequence, it may be brought to diagonal form by means of a similarity
transformation

K−1HK = E (46)

whereE is the diagonal matrix of the energy eigenvalues. The columns in the matrixK
are the instantaneous right eigenvectors ofH given by

H(Ci(t))|φ(s)(t)〉 = Ês(t)|φ(s)(t)〉. (47)

In an obvious notation

K = (|φ(1)〉, |φ(2)〉, . . . , |φ(s)〉, . . . , |φ(n)〉) . (48)

The rows inK−1 are the corresponding left eigenvectors ofH, properly normalized:

〈φ(i)|φ(j)〉 = δij . (49)

With the help ofK we obtain the adiabatic basis,{|ϕ̂s(ξ ; Ci(t))〉}, of instantaneous
bound and resonant states of the complete HamiltonianH ,

|ϕ̂s(ξi; Ci(t))〉 =
∑
m

|ϕm(ξi)〉Km,s(Ci(t)) (50)

and their adjoints

〈ϕ̂s(ξi; Ci(t)| =
∑

n

(K−1(t))sn〈ϕn(ξi)|. (51)

We may now write the expansion of9 as an expansion in instantaneous energy
eigenfunctions{|ϕ̂s(ξi; Ci(t))〉} of H ,

9 =
∑

s

|ϕ̂s(ξi, Ci(t))〉âs(t) (52)

where

âs(t) =
∑

n

(K−1(t))snan(t). (53)

Similarly, the expansion ofH9 becomes

H9 =
∑

s

|ϕ̂s(ξi; Ci(t))〉Ês(t)âs(t). (54)

Substitution of (52) and (54) in the time-dependent Schrödinger equation (1) gives the
set of coupled equations

dâs(t)

dt
+

∑
m=1

〈ϕ̂s |∇Rϕ̂m〉 · dR

dt
âm(t) = −iÊs(t)âs(t). (55)
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It will be assumed that the non-adiabatic transition amplitudes are very small,

1

|âs |
∣∣∣∣〈ϕ̂s |∇Rϕ̂m〉 · dR

dt
âm

∣∣∣∣ � 1 m 6= s. (56)

Then, we can make the approximation

1

âs

dâs

dt
' −iÊs(t) − 〈ϕ̂s |∇Rϕ̂s〉 · dR

dt
. (57)

Integrating both sides, we obtain

âs(t) = exp

[
− i

h̄

∫ t

t0

Ês(t
′) dt ′

]
eiγs âs(0) (58)

where the first factor is the complex dynamical phase, whereas the second one is the complex
Berry phase given by

γs = i
∫

c

〈ϕ̂s |∇Rϕ̂s〉 · dR (59)

in this expressionc is the path traced by the system in parameter space whent ′ goes from
t0 to t .

The right-hand side of (59) may be written as a surface integral with the help of Stokes
theorem,

γs = i
∑
m6=s

∫
6

∫
∂6=c

〈ϕ̂s |∇Rϕ̂m〉 × 〈ϕ̂m|∇Rϕ̂s〉 · dΣ (60)

where6 is a surface bounded by the curvec. This expression may be written in a more
convenient form by means of the identity

〈ϕ̂s |∇Rϕ̂m〉 = 1

Êm − Ês

〈ϕ̂s |∇RH1|ϕm〉 (61)

then,

γs = i
∑
m6=s

∫
6

∫
∂6=c

〈ϕ̂s |∇RH1|ϕ̂m〉 × 〈ϕ̂m|∇RH1|ϕ̂s〉 · dΣ

(Ês − Êm)2
(62)

provided the surface6 does not cross the diabolical circle where the denominator vanishes.

4.2. Computation of the geometric phase

Explicit expressions for the Berry phaseγs in terms of our parametrization of the interaction
Hamiltonian may easily be obtained. We recall that the unperturbed Hamiltonian and
its bound and resonant energy eigenfunctions are independent of time. Hence, the time
dependence of the bound and resonant instantaneous energy eigenstates of the perturbed
system is entirely contained in the matrixK, which is a function of time through the time
dependence of the external parameters. Therefore, from equation (50)

|∇Rϕ̂s(ξi; Ci(t))〉 =
∑
m

|ϕm(ξi)〉(∇RK)ms. (63)

When this expression is substituted in (59), and use is made of the bi-orthonormality of
the set of unperturbed bound and resonant eigenfunctions, we get

γs = i
∫

c

[K−1(∇RK)]ss · dR. (64)
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The geometric phase is now written as a path integral of the diagonal elements of the product
of the inverse and the gradient (in parameter space) of the matrixK, which diagonalizes
the matrixH. This expression forγs is equivalent to (59). In the case of a finite number
of interfering resonant states which may become degenerate, all other bound or resonant
energy eigenstates being non-degenerate, we may safely assume thatH is diagonal except
for a square diagonal block which mixes the interfering resonances. In this caseK is a
finite matrix and the evaluation of the integrand in the right-hand side of (64) involves only
the product of two finite matrices and no integration over the particle coordinates of the
microscopic internal components of the system is involved, as would seem to be the case
in the evaluation of〈ϕ̂s |∇Rϕ̂s〉.

Furthermore, from (48) we see that the columns in∇RK are the gradients of the
instantaneous right eigenvectors ofH. Therefore,γs may also be written as

γs = i
∫

c

〈φs |∇Rφs〉 · dR. (65)

From (64) we may derive a nice sum rule for the geometric phases of the interfering
resonante states,∑

s

γs = i
∫

tr[K−1(∇RK)] · dR. (66)

This is a topological invariant, namely, the first Chern class [21], as will be shown below
in the case of two interfering states.

Let us consider now the particular case of a system with two resonant states strongly
mixed by the external interaction, which may become degenerate by a small variation of
the external parameters while all other bound or resonant states remain non-degenerate. In
this case the system is in a domain in parameter space which contains one and only one
closed line of singularites ofK which is topologically equivalent to the diabolical circle
corresponding to an accidental degeneracy of the two interfering resonant states. Then, we
may safely assume thatH is diagonal except for a 2× 2 block H2×2. The matrixK which
diagonalizesH2×2 is given in (36).

The matricesK−1 and∇RK are readily obtained from (14) and (36),

K−1 = 1√
2ε

( √
ε + η

√
ε − η ξ/|ξ |√

ε − η −√
ε + η ξ/|ξ |

)
(67)

and

∇K = 1√
2ε

{(
− 1√

2ε
K + 1

2ε
M1

) (
R − i

1

2
Γ

)
+ 1

20
M2Γ + i

1

0(ε2 − η2)

ξ ∗

|ξ |M3(Γ × R)

}
(68)

where the matricesM1, M2, andM3 are

1
2(M1 + M2) = 1√

ε + η

(
1 0
0 −ξ ∗/|ξ |

)
(69)

1
2(M1 − M2) = 1√

ε − η

(
0 1

ξ ∗/|ξ | 0

)
(70)

and

M3 =
(

0 0√
ε − η −√

ε + η

)
. (71)
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Then, a straightforward calculation gives

γ1 = −1

2

∫
c

1

0ε(ε + η)
(Γ × R) · dR (72)

and

γ2 = −1

2

∫
c

1

0ε(ε − η)
(Γ × R) · dR. (73)

These expressions are very similar to the well known results obtained for the geometric
phase of bound states [1]. An obvious difference is that the geometric phase of resonant
states is complex sinceε andη are complex functions of the parametersR andΓ. There is
another important but less apparent difference. In the case of an accidental degeneracy of
resonances(0 6= 0), the denominator on the right-hand side of (72) and (73) vanishes on the
continuous line of singularities we have called the diabolical circle, and not at one isolated
point as is the case for bound states(0 = 0). It follows that two kinds of non-trivial,
topologically inequivalent closed paths are possible, as shown in figure 3. First, those paths
which surround or encircle the diabolical circle but are not linked to it. Second, the closed
paths which are linked to the diabolical circle. Paths of the first kind are clearly analogous
to the non-trivial paths that go around the diabolical point while paths of the second kind
have no analogue in accidental degeneracies of bound states.

Figure 3. In the evaluation of the Berry phase of two interfering resonances there are two kinds
of non-trivial, topologically inequivalent closed paths in parameter space. First, those, likeC(I),

which go around the diabolical circle but are not linked to it. Second, those, likeC(II), which
turn around the diabolical circle and are linked to it.

For paths of the first kind it is always possible to find a surface6 which spans the
closed pathc and does not cross the diabolical circle. Then, using Stokes theorem we may
write the geometric phaseγs as a surface integral. Computing directly from (72) and (73),
we get

γs = (−1)s

2

∫
6s

∫
∂6s=c

(R − i 1
2Γ) · dS

[(R − i 1
2Γ)2]

3
2

(74)

wheres = 1, 2. Sinceγ2 changes intoγ1 when61 and62 are exchanged and the sign of
dS is changed, the normals for62 and61 should be oppositely oriented. If we say thatΓ
points upwards, then61 is abovec and62 is belowc.

This is, of course, the same result as would have been obtained from the general
expression (62) and our parametrization of the perturbation term in the Hamiltonian, no
summation over intermediate states occurs in (74) since in the simple case of only two
interfering resonant states the summation in (62) has only one term.
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Adding γ1 andγ2, the sum rule is written as a surface integral

γ1 + γ2 = −1

2

∫
6

∫
∂6

(R − i 1
2Γ) · dS

[(R − i 1
2Γ)2]

3
2

(75)

where6 is a closed surface with the diabolical circle completely contained in its interior,
dS is the surface element normal to6.

The integral in (75) is easily computed when6 is a sphere with radiusR > 1
20, the

result is

γ1 + γ2 = −2π. (76)

It is now easy to show that the resonance degeneracy produces a continuous distribution
of singularities on the diabolical circle. To this end, we convert the surface integral (75) to
a volume integral using Gauss theorem. Then,

γ1 + γ2 = −1

2

∫ ∫ ∫
V

(
∇R · (R − i 1

2Γ)

[(R − i 1
2Γ)2]

3
2

)
dV (77)

whereV is the volume inside6 and bounded by it. The term in round brackets under the
integration sign vanishes whenε 6= 0. Therefore, the non-vanishing value ofγ1+γ2 implies
the occurrence ofδ-function singularities of the integrand on those points whereε vanishes.

Hence,

∇R ·
[

R − i 1
2Γ

[(R − i 1
2Γ)2]

3
2

]
= −δ(R − 1

20)

R2
δ(cosθ) (78)

the factorR−2 multiplying the delta function is needed to reproduce the value 2π of γ1+γ2.
We may say that, instead of having the fictitious magnetic charge on the ‘monopole’

singularity characteristic of the accidental degeneracy of bound states, in the case of
an accidental degeneracy of resonant states the fictitious magnetic charge is evenly and
continuously distributed on the closed line of singularities we have called the diabolical
circle.

Now, let us consider the difference between geometric phases of resonant and bound
states. With this purpose in mind we rewrite (72) and (73) as

γ1,2 = −1

2

∫
c

(Γ × R) · dR

0(ε2 − η2)
± 1

2

∫
c

η(Γ × R) · dR

0ε(ε2 − η2)
. (79)

These expressions take a simple and transparent form when we change from Cartesian
coordinates(X, Y, Z), with OZ parallel toΓ, to spherical coordinates(R, θ, ϕ) in parameter
space. Then, (79) becomes

γ1,2 = −1

2

∫
c

dϕ ∓ 1

2

∫
c

(R cosθ − i 1
20) dϕ√

R2 − 1
402 − i0R cosθ

(80)

the pathc is specified whenR andθ are given as functions ofϕ.
The sum rule for the geometric phases takes the form

γ1 + γ2 = −
∫

c

dϕ. (81)

This result is valid for all pathsc, it is also valid for bound or resonant states.
For closed paths of the first kind which go once around the diabolical circle

γ1 + γ2 = −2π c(I) of first kind. (82)
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This result is valid for all pathsc(I), independently of the shape ofc(I). It is of course,
the same result we obtained using the surface integral representation.

Still in the case of closed paths of the first kind, we may rearrange (80) as

γ1,2 = − 1
2

∫
c(I)

[1 ∓ cosθ ] dϕ ± 1γ (83)

where

1γ = i
1

4
0

∫
c(I)

(i 1
20 − 2R cosθ) + (R −

√
R2 − 1

402 − i0R cosθ)√
R2 − 1

402 − iR0 cosθ [R −
√

R2 − 1
402 − iR0 cosθ ]

dϕ. (84)

The first term in the right-hand side of (83) is the well known expression for the Berry
phase of two interfering bound states adiabatically transported in parameter space around
an accidental degeneracy. The second term gives the difference of the actual Berry phase
of the resonant state and the phase of a bound state,

γ res
1,2 = γ bound

1,2 ± 1γ (c(I)) c(I) of the first kind (85)

as shown in (84),1γ is proportional to0 and vanishes for vanishing0.

Therefore, the Berry phase acquired by a resonant state when it is transported in
parameter space around the diabolical circle in a path not linked to it is equal to the sum of
the real geometric phase a bound state would have acquired if transported around the same
path, plus a complex correction term characteristic of resonant states.

In the case of closed paths of the second kind, that is, those paths which are linked to
the diabolical circle, there is no surface6 which spans the closed pathc(II) without crossing
the diabolical circle, see figure 3. Therefore we may not use Stokes theorem to convert the
path integral into a surface integral. However, we may still compute the geometric phase
from the path integral,

For closed paths which are linked to the diabolical circle, the sum rule gives zero,

γ1 + γ2 = −
∫

c(II)
dϕ = 0 c(II) of second kind (86)

since, in this case, the angleϕ starts out at some initial valueϕ0 and, as the system traces
the pathc(II), it oscillates between a minimum and maximum values and finally ends at the
same initial valueϕ0.

The difference betweenγ1 andγ2 may be obtained from (80),

γ1,2 = ±1γ (c(II)) (87)

where1γ (c(II)) is given by an expression similar to (84). There is no analogue to this case
in bound states.

5. Validity of the adiabatic approximation

The present calculation of the Berry phase of a resonant energy eigenstate is based upon the
adiabatic approximation. In general, there seems to be some incompatibility between the
decay of the system, that is, the vanishing of the signal and adiabaticity, i.e. slow motion. A
rough estimation of the validity of the adiabatic approximation in this case may be obtained
from the criterion given in Messiah [22],∣∣∣∣max|ϕ̂s〉

min |ϕ̂s〉
∣∣∣∣ � 1 (88)
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where max denotes maximum angular frequency of and min denotes minimum Bohr
frequency of, which, in our notation means

h̄ max
{∣∣∣∑m6=s〈ϕ̂s |dϕ̂m/dt〉

∣∣∣}
min{|Es − Em|} � 1. (89)

Now, recalling the relation〈
ϕ̂s

∣∣∣∣dϕ̂m

dt

〉
= 1

(Em − Es)

〈
ϕ̂s

∣∣∣∣dH1

dt

∣∣∣∣ ϕ̂m

〉
(90)

and calling

1E = min{|Es − Em|} (91)

the condition (89) becomes

h̄ max{|〈ϕ̂s |dH1/dt |ϕ̂m〉|}
(1E)2

� 1. (92)

If T is some typical time of the driving Hamiltonian, such that∣∣∣∣〈ϕ̂s

∣∣∣∣dH1

dt

∣∣∣∣ ϕ̂m

〉∣∣∣∣ ' 1

T
|〈ϕ̂s |H1|ϕ̂m〉| (93)

T should not be so long that the signal cannot be measured. Hence, it seems reasonable to
estimateT from the largest half width of the interfering resonances:

T ' h̄

0max
. (94)

Hence, a rough criterion for the validity of the adiabatic approximation for unstable
states would be

max{|〈ϕ̂s |H1|ϕ̂m〉|}0max

(1E)2
� 1 (95)

where max{|〈ϕ̂s |H1|ϕ̂m〉|} indicates the maximum value along the path traced by the system
in parameter space.

6. Results and conclusions

The purpose of the foregoing has been to discuss the adiabatic evolution of an open quantum
system in a state which is a superposition of resonant states and evolves irreversibly due to
the spontaneous decay of the unstable states. More specifically, we studied the geometric
phase acquired by the resonant states when they are adiabatically transported in parameter
space by the mixing interaction around a degeneracy of resonances.

In the case of two resonant states mixed by a Hermitian interaction we find two
kinds of accidental degeneracies which may be characterized by the number and length
of the cycles of instantaneous energy eigenfunctions at the degeneracy. In the first case
there are two linearly independent eigenfunctions belonging to the same repeated energy
eigenvalue, that is, two cycles of length one. In the second case there is only one degenerate
resonant eigenstate and one generalized resonant eigenstate belonging to the same degenerate
(repeated) energy eigenvalue, i.e. one cycle of length two.

Accidental degeneracies of the first kind, or first rank, give rise to one ‘monopole’ point
singularity at a diabolical point in parameter space, as in the case of degeneracies of negative
energy bound states. In the present case the degenerate states are bound states of positive
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energy embedded in the continuum [20]. In degeneracies of the second kind, or second
rank, the fictitious magnetic charge is evenly and continuously distributed on a closed line
of singularities in parameter space, which is topologically equivalent to a ‘diabolical’ circle.
Only second rank degeneracies of two resonances produce a true degenerate resonant state.

Close to a degeneracy of first rank, the hypersurfaces which represent the real and
imaginary parts of the resonance energies in parameter space are two double cones lying in
orthogonal subspaces, with their vertices located at the same point, which for this reason
might be called a double diabolical point.

When the degeneracy is of the second rank, the topology of the energy surfaces is
different from that at a crossing of bound states. The energy surfaces of the two resonant
states that become degenerate are connected at all points in a circle. Close to the crossing,
the energy hypersurface has two pieces lying in orthogonal subspaces in parameter space.
The surface representing the real part of the energy has the shape of a hyperbolic cone
of circular cross section, or an open sandglass, with its waist at the diabolical circle. The
surface of the imaginary part of the energy is a sphere with the equator at the diabolical
circle. The two surfaces touch each other at all points on the diabolical circle.

In the case of two interfering resonant states, the geometric phase acquired by the
resonant states when transported around the diabolical circle in a closed path which is not
linked to it, may be written as the sum of two terms:

γ res
1,2(C

I) = γ bound
1,2 (C I) ± 1γ (C I). (96)

The first term,γ bound
1,2 (C I), is the real geometric phase which a negative energy eigenstate

would have acquired when transported around a diabolical point in a closed path in the same
parameter space. The second term is complex, it gives rise to a change of the phase and a
dilation of the resonant state eigenfunction. Its imaginary part may be positive or negative,
in consequence, it may produce an amplification or a damping of the wavefunction which
may compensate or reinforce the attenuation due to the imaginary part of the dynamical
phase factor. For long lived, narrow resonances, we may expect1γ to be small compared
with γ bound, since it is proportional to the ratio0/R which is roughly proportional to the
ratio of the width to the real part of the resonant energies.

When the resonant states are transported in a closed pathC II which does not go around
the diabolical circle but is linked to it, the geometric phase they acquire is

γ res
1,2(C

II ) = ±1γ (C II ). (97)

Since it is not possible to find a continuous surface6 which spans the closed pathC II

without crossing the diabolical circle, we can not make use of the theorem of Stokes to
convert the path integral into a surface integral. However, it may readily be computed as a
path integral from the expression

1γ (C II ) =
∫

C II

(Z − i 1
20)(Γ × R′) · dR′

0

√
(R − i 1

2Γ)2(X2 + Y 2)

(98)

which is obtained from (80) and (86). As in the previous case,1γ (C II ) is complex and
produces changes of phase and dilations in the resonant state wavefunction. This case has
no analogue in bound states.

The sum of the geometric phases acquired by two interfering resonant states which
are transported around a degeneracy in a closed path in parameter space is a topological
invariant, namely the first Chern class [21]. For closed paths of the first kind its value is
the ‘magnetic charge’ on the diabolical circle, and it vanishes for paths of the second kind.
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In conclusion, we have shown that the Berry phase of resonant states differs in various
ways from that of bound states. It has some interesting mathematical properties not present
in the Berry phase of bound states. From the physical point of view it is also interesting
since it has a new term which produces dilations of the wavefunction and may give rise to
observable effects not present in the geometric phase factors of bound states.
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